## MARK SCHEME for the May/June 2011 question paper

## for the guidance of teachers

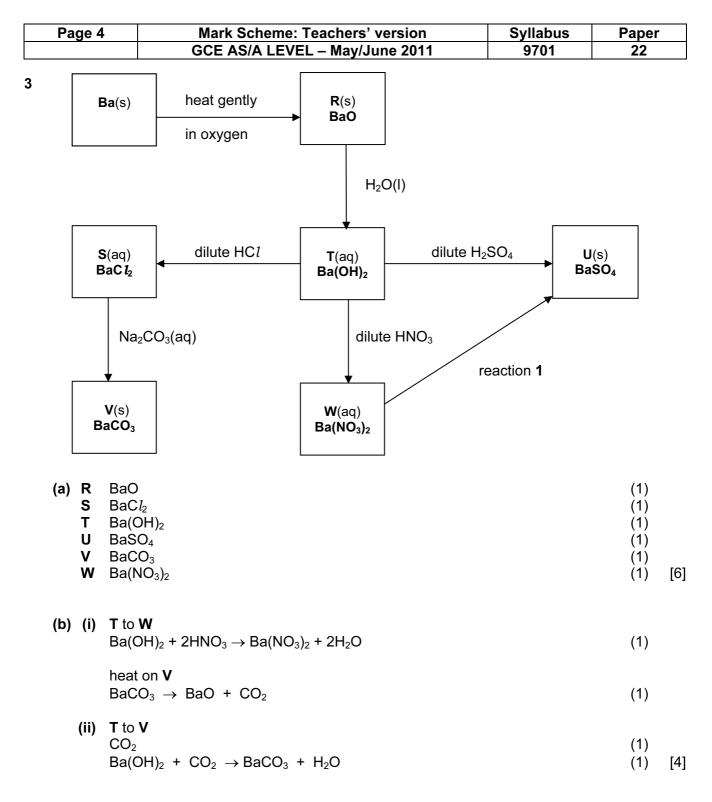
## 9701 CHEMISTRY

9701/22

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

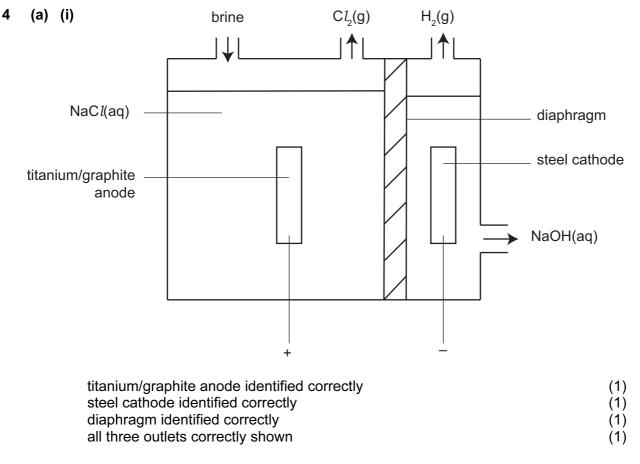
Mark schemes must be read in conjunction with the question papers and the report on the examination.


• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.



| Page 2 |         | 2                       | Mark Scheme: Teachers' version                                                                | Syllabus | Paper      |     |
|--------|---------|-------------------------|-----------------------------------------------------------------------------------------------|----------|------------|-----|
|        |         |                         | GCE AS/A LEVEL – May/June 2011                                                                | 9701     | 22         |     |
|        |         |                         | H <sub>3</sub> CH <sub>2</sub> R][H <sub>2</sub> 0]<br>H <sub>3</sub> CH <sub>2</sub> H][ROH] |          | (1)        | 101 |
|        | no      | units                   |                                                                                               |          | (1)        | [2] |
|        | (b) (i) | n(Na                    | aOH) = <u>22.5 x 2.00</u> = 0.045<br>1000                                                     |          | (1)        |     |
|        | (ii)    | n(Na                    | aOH) = n(HCl) = 0.005                                                                         |          | (1)        |     |
|        | (iii)   | CH₃(                    | $CO_2H + NaOH \rightarrow CH_3CO_2Na + H_2O$                                                  |          | (1)        |     |
|        | (iv)    | •                       | aOH) = 0.045 – 0.005 = 0.04<br>v ecf on <b>(i)</b> and/or <b>(ii)</b>                         |          | (1)        | [4] |
|        | (c) (i) |                         | aOH) and $n(CH_3CO_2H) = 0.04$<br>$H_3CO_2R)$ and $n(H_2O) = 0.06$                            |          | (1)<br>(1) |     |
|        | (ii)    | <i>K</i> <sub>c</sub> = | $\frac{0.06 \times 0.06}{0.04 \times 0.04} = 2.25$                                            |          |            |     |
|        |         |                         | v ecf on wrong values in <b>(b)(i)</b><br>v ecf on wrong expression in <b>(a)</b>             |          | (1)        | [3] |
|        |         |                         | action with ester is high <b>or</b><br>action with acid is low                                |          |            |     |
|        |         |                         | with ester is slow <b>or</b><br>with acid is fast                                             |          | (1)        | [1] |
|        |         |                         | im moves to RHS/more ester would be formed<br>ain value of <i>K</i> c <b>or</b>               |          | (1)        |     |
|        | to r    | estore                  | e system to equilibrium                                                                       |          | (1)        | [2] |
|        |         |                         |                                                                                               |          | [Total:    | 12] |


|   | Page 3 |                                                                                |                                                  |                                   | Teachers'                              |                                 |                                    | Syllabus    | Paper   | ,   |
|---|--------|--------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------|----------------------------------------|---------------------------------|------------------------------------|-------------|---------|-----|
|   |        |                                                                                | GCE /                                            | AS/A LEVE                         | EL – May/Jเ                            | une 2011                        |                                    | 9701        | 22      |     |
| 2 | (a)    |                                                                                | CH <sub>2</sub> =CH                              | 2 + HF                            | $\rightarrow$ C                        | H₃CH₂F                          |                                    |             |         |     |
|   |        |                                                                                | ds 4 C-H<br>ken 1 C=C<br>mol <sup>-1</sup> 1 H-F | 1640<br>610<br><u>562</u><br>2812 | bonds<br>made<br>/kJ mol <sup>-1</sup> | 5 C-H<br>1 C-C<br>1 C-F<br>(240 | 2050<br>350<br><u>E</u><br>00 + E) |             |         |     |
|   |        |                                                                                | reactant bond<br>+ 610 + 562 = 2                 |                                   | SI <sup>-1</sup>                       |                                 |                                    |             | (1)     |     |
|   |        | making                                                                         | product bonds                                    | gives                             |                                        |                                 |                                    |             |         |     |
|   |        | 5 x 410                                                                        | + 350 + E =                                      | (2400 + <i>E</i>                  | E) kJ mol⁻¹                            |                                 |                                    |             | (1)     |     |
|   |        | $\Delta H^{e}_{reaction}$                                                      | n = - (2400 + <i>E</i> )                         | ) + 2812 =                        | – 73 kJ mol                            | -1                              |                                    |             | (1)     |     |
|   |        | (2400 +                                                                        | E) = 2812 +                                      | 73 = 288                          | 5 kJ mol⁻¹                             |                                 |                                    |             |         |     |
|   |        | E = 288                                                                        | 35 - 2400 = 4                                    | l85 kJ mol                        | -1                                     |                                 |                                    |             | (1)     |     |
|   |        | allow ect                                                                      | f on wrong bon                                   | d energy v                        | alues and/o                            | r incorrec                      | t arithme                          | etic        |         | [4] |
|   | (b)    | any <b>two</b><br>non-toxic<br>unreactiv<br>volatile<br>non-flam<br>easily liq | c<br>ve<br>nmable                                |                                   |                                        |                                 |                                    |             | (1 + 1) | [2] |
|   | (c)    | in CCl <sub>2</sub> F                                                          |                                                  |                                   |                                        |                                 |                                    |             |         |     |
|   |        |                                                                                | nd energy is 34<br>nd is broken by               |                                   | and is weal                            | ker than C                      | C-F or C-                          | H bonds     | (1)     |     |
|   |        |                                                                                | adicals are for                                  |                                   |                                        |                                 |                                    |             | (1)     | [2] |
|   | (d)    | • •                                                                            | trapping of refle<br>lucing global w             |                                   | from the Ea                            | rth in the                      | lower at                           | mosphere    |         |     |
|   |        | (ii) CO <sub>2</sub>                                                           | /carbon dioxide                                  | 9                                 |                                        |                                 |                                    |             | (1)     | [3] |
|   | (e)    | octahedr                                                                       | ral                                              |                                   |                                        |                                 |                                    |             | (1)     | [1] |
|   |        |                                                                                |                                                  |                                   |                                        |                                 |                                    | [Total: 12] |         |     |



| (c) | Na <sub>2</sub> SO <sub>4</sub> (aq)/K <sub>2</sub> SO <sub>4</sub> (aq) or any soluble sulfate | (1) | [1] |
|-----|-------------------------------------------------------------------------------------------------|-----|-----|
|-----|-------------------------------------------------------------------------------------------------|-----|-----|

| Page 5    | Mark Scheme: Teachers' version                     | Syllabus | Paper              |     |
|-----------|----------------------------------------------------|----------|--------------------|-----|
|           | GCE AS/A LEVEL – May/June 2011                     | 9701     | 22                 |     |
| (d) (i) B | a:O = <u>81.1</u> : <u>18.9</u><br>137 16          |          | (1)                |     |
|           | = 0.59 : 1.18<br>= 1 : 2<br>gives BaO <sub>2</sub> |          | (1)                |     |
| (ii) Ba   | aSO <sub>4</sub>                                   |          | (1)                |     |
| (iii) Ba  | $aO_2 + H_2SO_4 \rightarrow BaSO_4 + H_2O_2$       |          | (1) [ <sup>,</sup> | [4] |





- (ii) anode  $2Cl^{-}(aq) \rightarrow Cl_{2}(g) + 2e^{-}$  (1) cathode  $2H^{+}(aq) + 2e^{-} \rightarrow H_{2}(g)$ or  $2H_{2}O(l) + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$  (1) [2]
- (iii) sodium hydroxide (1) [1]
  - [Total: 7]

[4]

| Page            | 6                 | Mark Scheme: Teachers' version                                             |          |                                                 | Syllabus | Paper      |     |
|-----------------|-------------------|----------------------------------------------------------------------------|----------|-------------------------------------------------|----------|------------|-----|
| L               |                   | GCE                                                                        | AS/A     | LEVEL – May/June 2011                           | 9701     | 22         |     |
| <b>5 (a)</b> Cł | H₂OCC             | 0(CH <sub>2</sub> ) <sub>16</sub> CH <sub>3</sub>                          |          |                                                 |          |            |     |
| L<br>CI         | HOCO              | (CH <sub>2</sub> ) <sub>16</sub> CH <sub>3</sub>                           |          |                                                 |          |            |     |
| <br>Cl          | H₂OCC             | 0(CH <sub>2</sub> ) <sub>16</sub> CH <sub>3</sub>                          |          |                                                 |          |            |     |
| all             | I three           | alcohol group                                                              | s mus    | t be esterified                                 |          | (1)        | [1] |
|                 |                   | Cl or dilute H₂<br>I(aq) followed                                          |          | (1)                                             | [1]      |            |     |
| (c)             | CH <sub>3</sub> ( | (CH <sub>2)7</sub>                                                         | Н        |                                                 |          |            |     |
|                 |                   | н                                                                          | (сн      | l <sub>2</sub> ) <sub>7</sub> CO <sub>2</sub> H |          | (1)        | [1] |
| (d) (i)         | fatty             | acid that con                                                              | tains r  | more than one C=C bond                          |          | (1)        |     |
| (ii)            |                   | ogen<br>el/Raney nick                                                      | el/plat  | inum/palladium                                  |          | (1)<br>(1) | [3] |
| (e) (i)         |                   | (CH <sub>2</sub> ) <sub>7</sub> CHO<br>C(CH <sub>2</sub> ) <sub>7</sub> CX |          |                                                 |          | (1)<br>(1) |     |
| (ii)            |                   | dinitrophenylh<br>w/orange/red                                             |          |                                                 |          | (1)<br>(1) |     |
| (iii)           |                   | ens' reagent<br>er mirror/                                                 | or<br>or | Fehling's/Benedict's solution brick red ppt.    |          | (1)        |     |
|                 |                   | precipitate                                                                |          |                                                 |          | (1)        | [6] |
| (f) (i)         | ) two             |                                                                            |          |                                                 |          | (1)        |     |
| (ii)            | este              | r                                                                          |          |                                                 |          | (1)        | [2] |
|                 |                   |                                                                            |          |                                                 |          | [Total:    | 14] |